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The propagation of weakly nonlinear, long internal wave fronts in a contraction
is considered in the transcritical limit as a model for the establishment of virtual
controls. It is argued that the appropriate equation to describe this process is a
variable coefficient Korteweg–de Vries equation. The solutions of this equation are
then considered for compressive and rarefaction fronts. Rarefaction fronts exhibit
both normal and virtual control solutions. However, the interaction of compressive
fronts with contractions is intrinsically unsteady. Here the dynamics take two forms,
interactions with the bulk of the front and interactions with individual solitary waves
separating off from a front trapped downstream of the contraction.

1. Introduction
The concept of a virtual control was introduced by Wood (1968) in studying

the hydraulic, or hydrostatic, limit of the steady selective withdrawal of a stratified
fluid through a contraction. In contrast to normal controls, which only occur at the
maximum topographic perturbation to the flow, virtual controls can occur anywhere
along the contraction and are associated with the behaviour of a particular linear
long-wave mode changing from subcritical to supercritical. Wood showed that for
a continuously stratified fluid a self-similar solution exists which accelerates the
flow from a stagnant reservoir through an infinite number of virtual controls. This
solution was studied further by Benjamin (1981), who demonstrated the hydraulically
controlled nature of the flow, and by Armi & Williams (1993), who, still in the
hydraulic limit, considered both experimentally and theoretically deviations from this
flow. An excellent example of a virtual control can be seen in figure 6 of Armi (1986),
which shows the flow of a two-layer fluid through a contraction. Here the interface
remains flat past the throat of the contraction and then, from a point downstream
of the throat, slowly increases in height. Thus the flow must pass through two virtual
controls, one on the upstream side of the throat which waves propagating from
downstream cannot reach and one on the downstream side at which point waves
become trapped.

As demonstrated by Armi (1986) and Killworth (1992) there is a fundamental
difference between the hydraulic flow of a stratified fluid through a contraction and
over a sill. In the former both virtual and normal controls can occur, whereas in the
latter only normal controls occur. The process of the generation of normal controls for
the flow of a stratified fluid over topography is well understood from weakly nonlinear,
long-wave theory (e.g. see Grimshaw & Smyth 1986). Here transcritical flow over a
sill creates resonantly forced waves which generate subcritical conditions upstream
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and supercritical conditions downstream. Clarke & Grimshaw (1994) showed that,
in general, in the weakly nonlinear, long-wave limit transcritical flow through a
contraction and over topography are equivalent, so long as in the former case either
the perturbation to the width of the channel varies with depth or the oncoming
fluid has a vertically varying velocity. In these circumstances a vertical velocity is
induced resulting in the deflection of isopycnals and the consequent generation of
resonant waves. Moreover, if the horizontal velocity is not vertically sheared and the
channel cross-section is independent of depth, Clarke & Grimshaw (1994) showed
that a similar situation may still occur due to non-Boussinesq effects. However, this
situation only occurs in a very narrow transcritical velocity band with relatively small
amplitude waves, and still with only normal control type solutions. This contrasts with
hydraulic theory which demonstrates that virtual and normal controls may occur even
in this joint limit. Thus, another mechanism must cause the generation of hydraulic
control in these circumstances.

Since virtual controls are fundamental to the problem of the selective withdrawal of
a stratified fluid through a contraction, we consider the possibility that a mechanism
for their generation may be found by considering the initial-value problem of selective
withdrawal in the presence of a weak contraction. Indeed, Kao (1976) presented the
results of unsteady experiments confirming that selective withdrawal does not occur
upstream of a contraction if the linear long-wave speed of the first vertical mode
vanished in the contraction, i.e. the first mode experienced a virtual control. The
unsteady theory of selective withdrawal (e.g. see Pao & Kao 1974; Imberger &
Patterson 1990; Clarke & Imberger 1995) demonstrates that columnar disturbances
or shear fronts may be responsible for the generation of steady selective withdrawal
flows. These are horizontally propagating waves of zero frequency across which the
velocity and density have differing upstream and downstream limits. Internal wave
fronts, shear fronts or columnar disturbances, referred to here collectively as fronts,
do not just occur in selective withdrawal. For example, the theory of Pao & Kao
(1974) was preceded by the work of McEwan & Baines (1974) who considered the
establishment of an experimental shear flow. The waves found to establish this flow
were identical to those found in the establishment of selective withdrawal. Further,
it would be expected that in the experiments of Armi (1986) an interfacial front
would be generated downstream of the contraction when the flow commences. The
transcritical interaction of these fronts with contractions would appear to be a possible
mechanism for the creation of virtual controls. It is this unsteady interaction which
we study here.

To study the unsteady interactions of fronts with contractions we must in general
separate out the near-critical mode. This assumption then allows analytical progress
to be made using weakly nonlinear, long-wave theory. In the problem of selective
withdrawal this neglect of other modes is not a dramatic restriction, since it is the
effect of the contraction on the first mode which is fundamental to determining the
behaviour upstream of the contraction. For other manifestations of fronts it would
be expected that there is also a fundamental mode which largely determines the
behaviour of the system. For two-layer flow there is only one upstream propagating
mode, whereas in the work of McEwan & Baines (1974) again the first mode is
the fundamental mode. It is the transcritical behaviour of these fundamental modes
which is of interest.

In § 2, following Clarke & Grimshaw (1994), the equations describing the transcriti-
cal propagation of weakly nonlinear, long internal waves through a weak contraction
are presented. Consideration of these equations for the initial condition of a front then
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leads to a model equation, a variable coefficient Korteweg–de Vries (vKdV) equation,
for the study of the interaction of fronts with contractions and consequently the
establishment of virtual controls. The hydraulic limit of the vKdV equation is con-
sidered in § 3. Fronts have two possible forms, either rarefactions or undular bores,
corresponding to negative and positive amplitudes. The respective behaviour of each
of the two forms is presented in §§ 4 and 5. The results are summarized and related
to previous work on virtual controls in § 6.

2. Problem formulation
Consider the inviscid, non-diffusive flow of a stratified fluid in a duct. A Cartesian

coordinate system h(x, y, z) is introduced, where h is the undisturbed height of the
free-surface above the origin, x is the horizontal coordinate along the duct, y is the
transverse coordinate and z is the vertical coordinate, being positive upwards. The
density is ρ0ρ(z−ζ), where ζ is the non-dimensional vertical particle displacement. The
Boussinesq parameter, which characterizes the strength of the density stratification, is
then defined as β = ρ(0)− ρ(1). In turn the reduced gravity is g′ = βg, where g is the
magnitude of the acceleration due to gravity. The normalized buoyancy frequency is
then

N2 = − ρ′

βρ
. (2.1)

Time is (h/g′)1/2t, the fluid velocities are (g′h)1/2(u, v, w) and the free surface displace-
ment is ehη, where the binary parameter e is 0 for a rigid lid boundary condition
and 1 for a free surface condition. Finally the pressure is ρ0gh(P (z) + βp), where
P ′ = −ρ(z).

The waves in the channel are assumed to have amplitude O(α) and wavelength
O(µ−1). It is assumed that this is also the lengthscale of the perturbation of the
contraction, which has amplitude O(ε), and that

α, ε, µ� 1. (2.2)

Now assuming the usual balance for long, weakly nonlinear waves,

α = µ2, (2.3)

we introduce

(x, y, t) = α−1/2(x′, y′, t′), (2.4)

and

b′± = ±b′0(1 + εf±(x′, z)), (2.5)

where y = b′± denotes the transverse boundaries of the channel. The mean perturba-
tion to the channel width is

f = 1
2
(f+ + f−). (2.6)

A mean flow ū exists in the channel, which can be assumed to be independent of x
and y. At this point no other restrictions are placed on f± and ū. The appropriate
scaling is then

u = ū+ αu′, v = εv′, w = α3/2w′, p = αp′, ζ = αζ ′, η = αβη′. (2.7)

Hereinafter only the scaled variables will be used, and so the prime superscripts are
omitted.
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To investigate the behaviour of fronts trapped in a contraction it must be assumed
that the amplitude of the transcritical front is significantly larger than that of all other
modes. In general this would be expected to be the case as in this weakly nonlinear,
long-wave limit all other modes will propagate away from the contraction. Further,
the leading order dynamical effects of nonlinearity and dispersion are assumed to be
of the same order of magnitude as the leading order effect of the contraction. These
assumptions then determine the magnitude of α. As shown by Clarke & Grimshaw
(1994) for general stratifications there are two possible choices for α. A full derivation
of the following equations can be found therein.

Case 1 In the general case ū and f vary with height. Let

α = ε1/2, (2.8)

with no restriction on β. The basic state, ū(z), ρ(z), is assumed to be close to a
long-wave resonance, where

ū = −c(z) + ε1/2∆+ O(ε), (2.9)

and c is such that there is a regular long-wave modal function φ(z), defined by

(ρc2φz)z + ρN2φ = 0 (2.10a)

with

φ =

{
eβc2φz on z = 1

0 on z = 0.
(2.10b)

The detuning parameter ∆ quantifies the deviation of the system from resonance. A
long-time scale is introduced:

τ = ε1/2t, (2.11)

and a perturbation solution for ζ is sought in the form

ζ = A(x, τ)φ(z) + ε1/2ζ(1) + O(ε). (2.12)

Then it can be shown that A satisfies the forced KdV equation

Aτ + ∆Ax + rAAx + sAxxx = Gx, (2.13a)

where

I = 2

∫ 1

0

ρc2φ2
z dz, (2.13b)

Ir = 3

∫ 1

0

ρc3φ3
z dz, (2.13c)

Is =

∫ 1

0

ρc3φ2 dz, (2.13d)

IG =

∫ 1

0

ρc2fφz dz. (2.13e)

In general, since β � 1 the Boussinesq limit β → 0 may be used, as it will only
marginally effect the coefficients of (2.13).

Case 2 In the joint limit β → 0 and ū and f independent of height the forcing
term in (2.13) disappears. However, Clarke & Grimshaw (1994) demonstrated that
then a similar situation may still occur due to non-Boussinesq effects. Now let
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ūz = fz = 0 and

α = ε, β = σε, (2.14)

where, for the moment, σ = O(1). Again it is assumed that ū is close to a long-wave
resonance, however now

ū = −c+ εδ + O(ε2), (2.15)

and c is now a constant, and such that for a linear long-wave modal function φ(z)

c2φzz +N2φ = 0 (2.16a)

with

φ = 0 on z = 0, 1. (2.16b)

Then the width-averaged perturbation to the mean flow due to the contraction is

δ̂, where it can be shown that

δ̂x =
1

2b0

∫ b0

−b0

δx dy = cfx. (2.17)

Introducing

τ = εt, (2.18)

and

ζ = A(x, τ)φ(z) + εζ(1) + O(ε2), (2.19)

it can then be shown that A satisfies

Aτ + (∆A)x + rAAx + sAxxx = γ∆x, (2.20a)

where

I = 2

∫ 1

0

φ2
z dz, (2.20b)

I∆ = Iδ̂ + σc3( 1
2
[φ2

z]
1
0 − e[φ2

z]z=1), (2.20c)

Ir = 3c

∫ 1

0

φ3
z dz, (2.20d)

Is = c

∫ 1

0

φ2 dz, (2.20e)

Iγ = σc2(e[φz]z=1 − [φz]
1
0). (2.20f)

The coefficient of the forcing term, γ, is O(σ), and so the amplitude of any forced
wave is actually O((βε)1/2) rather than O(ε). Clearly, in the Boussinesq limit, σ → 0,
no forced wave is generated.

In the absence of incident fronts, for both (2.13) and (2.20) two types of resonant
solution occur: strong resonant solutions which are characterized by quasi-steady
supercritical conditions downstream of the contraction and weak resonant solutions
which are characterized by quasi-steady lee wave trains downstream of the contraction.
In the terminology of hydraulic theory both these types of solution can be classified
as exhibiting normal control, that is the solution is controlled at the maximum
constriction.

In the first instance the effect of a shear front of amplitude Λ propagating towards
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the contraction can be considered by uniformly perturbing the amplitude by an
amount Λ. Then, (2.13) is invariant under the transformation

A→ A+ Λ, ∆→ ∆− rΛ, (2.21)

whereas (2.20) is only invariant with the additional transformation

γ → γ + Λ. (2.22)

Thus by perturbing the amplitude in (2.13) the effect is only to change the detuning
parameter, leaving the forcing unchanged. The balance for a trapped front and a
forced resonant solution are therefore identical. In (2.20) the forcing is also altered,
which suggests that the balance between a trapped front and a resonant forced
solution differ. In this latter case, the resonant forced solution is due to a balance
between non-Boussinesq effects and the nonlinear terms, while the trapped front can
occur solely due to a balance between the basic flow perturbation and the nonlinear
terms.

For (2.13) Grimshaw & Smyth (1986) showed that the quasi-steady solutions form
over a timescale O(ε−1/2). Thus it can be justifiably assumed that a quasi-steady
solution has formed by the time any incident front has propagated to the vicinity
of the contraction. If a strong resonant solution has formed the conditions are
supercritical downstream of the contraction, and so, the front will be swept back
downstream with the undular bores formed by the resonant solution. If a weak
resonant solution forms then the front may be able to propagate upstream. Its only
effect would then be to perturb the resonant solution, causing the detuning parameter
to change, but leaving the forcing unchanged. Thus a front cannot be expected to
alter the leading order balance which occurs for a controlled solution in this case.
Moreover, the possibility of virtual controls occurring in this system can be dismissed
by noting that (2.13) is also the model equation for flow over topography, in which
case Killworth (1992) has shown that in general only normal controls can occur.

In the second case the effect of a front with amplitude O(ε) propagating towards the
contraction would be expected to dominate any resonant waves, as typically ε � β
or equivalently |Λ| � σ. It is this case that is our concern here. Consequently, we
make the Boussinesq approximation, i.e. σ → 0, whereupon (2.20) becomes

Aτ + (∆A)x + rAAx + sAxxx = 0. (2.23)

This can be converted to canonical form by introducing

τ∗ = sτ, ∆∗ =
∆

s
, A∗ =

rA

6s
. (2.24)

Then omitting the asterisks

Aτ + (∆A)x + 6AAx + Axxx = 0. (2.25)

This vKdV equation forms the basis of our model for the interaction of fronts with
contractions.

The front is assumed to be initially described by a step function, centred downstream
of the contraction, where

A(x, 0) = ΛS(x), (2.26)

such that S decreases monotonically from 1 to 0 as x varies from −∞ to ∞. The
velocity perturbation in the contraction is assumed here to be of the form

∆ = ∆0 − ∆1θ(x/xa), (2.27)
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where 0 6 θ 6 1, with θ decreasing monotonically from 1 to 0 as |x| varies from 0 to
∞. For example, all numerical simulations presented here use

θ(x) = sech2x. (2.28)

In the limit xa → 0 the solutions depend only on the integral of θ over x. Further, in
general, so long as both θ and S are smoothly varying the exact details of the two
functions do not significantly effect the solutions. Note that ∆0 represents the upstream
velocity perturbation (∆0 ? 0 corresponds to subcritical/supercritical respectively),
while ∆1 > 0 represents the magnitude of the contraction (see (2.17)).

Thus the problem to be investigated hereafter is described by (2.25), (2.26) and
(2.27). For a given θ(x) this has four free parameters: Λ, ∆0, ∆1 and xa. However,
(2.25) is invariant under the transformation

τ→ λ3/2τ, x→ λ1/2x, ∆→ λ−1∆, A→ λ−1A, (2.29)

where λ is an arbitrary (positive) parameter. Let

λ = (6|Λ|)−1, (2.30)

then it is apparent that the three important parameters for this problem are |Λ|1/2xa,
|Λ|−1∆0 and |Λ|−1∆1. The terms long and short contractions refer hereinafter to the
limits |Λ|1/2xa � 1 and |Λ|1/2xa � 1 respectively. Note that although the limit of
short contractions is explicitly considered here, this is to determine how the long
contraction limit is modified. In reality it would be expected that columnar vortices
might form in the lee of short obstacles effectively modifying the flow field in the
vicinity of the obstacle.

In the limit ∆1 → 0 the interaction of fronts with contractions must be consistent
with the solutions for ∆1 = 0, in which case (2.25) is simply the KdV equation.
Approximate solutions for the evolution of a front are then well known (e.g. see
Gurevich & Pitaevskii 1974 and Fornberg & Whitham 1978). Therefore, let the initial
condition be a discrete step centred at x = x0(< 0), such that

S(x) = 1−H(x− x0), (2.31)

where H( · ) is the Heaviside step function. Smoother initial conditions will add
transients to the approximate solutions.

Based on the modulation theory of Whitham (1965), for Λ > 0 Gurevich &
Pitaevskii (1974) showed that the solution is an undular bore which can be approxi-
mated by a slowly varying cnoidal wavetrain:

A = b+ 2a

{
cn2κ(x− x0 − (U + ∆0)τ) +

1− m
m
− E

mK

}
, (2.32a)

where

κ =
( a
m

)1/2

, U = 6

(
b+ 2a

(
2− m

3m
− E

mK

))
, (2.32b)

m is the modulus of the Jacobian elliptic function cn, while K(m) and E(m) are the
complete elliptic integrals of the first and second kind respectively. The parameters
b, a and m are slowly varying functions of x and τ. The appropriate solution for an
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undular bore is

b = Λ

(
m− 1 +

2E

K

)
a = Λm

x− x0

τ
= ∆0 + 2Λ

(
1 + m− 2m(1− m)K

E − (1− m)K

)


for 0 6 m 6 1, (2.33)

which occupies the expansion fan

∆0 − 6Λ 6
x− x0

τ
6 ∆0 + 4Λ. (2.34)

At the leading edge as m→ 1 the solution approaches a solitary wave of amplitude 2Λ,
while at the trailing edge as m→ 0 the solution approaches linear waves propagating
on a mean level Λ. In the limit ∆1 → 0 this solution can only completely propagate
to within the vicinity of the contraction if 4Λ > −∆0. If this inequality is not satisfied
an interaction will not occur. Conversely, if 6Λ < ∆0 the whole undular bore can
propagate through the contraction, and it would be expected that the interaction
between the undular bore and contraction will be rapid and the undular bore will
propagate upstream, leaving a subcritical solution in the vicinity of the contraction.

For Λ < 0 Fornberg & Whitham (1978) showed that asymptotically the dispersive
term could be neglected. In this limit the solution is a rarefaction front of the form

A =


Λ if x− x0 < (∆0 + 6Λ)τ

(x− x0 − ∆0τ)/6τ if (∆0 + 6Λ)τ < x− x0 < ∆0τ

0 if x− x0 > ∆0τ.

(2.35)

The rarefaction occupies the expansion fan

∆0 + 6Λ 6
x− x0

τ
6 ∆0. (2.36)

Now in the limit ∆1 → 0 the rarefaction can only fully propagate to within the
vicinity of the contraction if 6Λ > −∆0. Otherwise, and, in particular if ∆0 < 0,
there will be no interaction. If −6Λ � ∆0 > 0 then it would again be expected
that the interaction between the rarefaction and contraction will be rapid and the
rarefaction will propagate upstream leaving a subcritical solution in the vicinity of
the contraction.

3. Unsteady hydraulic theory
For long contractions the solution technique of Grimshaw & Smyth (1986) and

Clarke & Grimshaw (1994) suggest that we consider the solutions of (2.25), (2.26) and
(2.27) in the hydraulic limit. In this limit (2.25) reduces to the characteristic equation

d

dx
(∆A+ 3A2) = 0 on

dx

dτ
= ∆+ 6A, (3.1)

which can be integrated to give the solution

6A = −∆± (∆2 + 12f0)
1/2 on

dx

dτ
= ±(∆2 + 12f0)

1/2, (3.2a)
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where

f0 = 3Λ2S(x0)
2 + ∆(x0)ΛS(x0), (3.2b)

and x0 = x(0) is the initial position of each characteristic. The choice of the sign in this
solution is initially that of ∆(x0) + 6ΛS(x0), and then it reverses if the characteristic
has a turning point, i.e. dx/dτ = 0. It is the characteristics with turning points which
are of particular interest here, as these correspond to the weakly nonlinear limit of
hydraulically controlled solutions.

Consider first the case Λ > 0, which in the hydraulic limit can be called a
compressive front. Initially the front is located downstream of the contraction. In the
hydraulic limit the compressive front will form a shock, and then, as described in
the previous section, dispersive effects must be invoked, and the front develops into
an undular bore. From the results obtained in the previous section, we infer that the
undular bore will only reach the contraction if 4Λ > −∆0, and that if 6Λ < ∆0 there
will be only a rapid interaction with the contraction. The remaining cases must be
studied numerically, and this is taken up in § 5.

Next, suppose that Λ < 0 which is the rarefaction front of the previous section.
We infer that only for this case can hydraulic control occur in the contraction, and
so we consider this now in some detail. From the results of the previous section, we
infer that the rarefaction cannot reach the contraction if ∆0 6 −6Λ, so henceforth we
let ∆0 > −6Λ, so that in particular ∆0 > 0 (i.e. the upstream velocity perturbation is
subcritical). Then three regimes can be identified. Using the parameter λ, (2.30), we
see that λ∆0 > 1. Then, in the first regime

0 < λ∆1 < λ∆0 − (2λ∆0 − 1)1/2. (3.3)

Here no turning points occur in the contraction or downstream, and so the front
is able to propagate through the contraction, leaving a steady, subcritical solution
in its wake. For long times, all the characteristics in the contraction emanate from
downstream, where

f0 = 3Λ2 + ∆0Λ, (3.4)

and hence the steady solution is

6A = −∆+ (∆2 + 12∆0Λ+ 36Λ2)1/2. (3.5)

Outside the contraction, A = Λ, and upstream this steady solution is preceded by the
rarefaction front, with the form (2.35). In the second regime, again ∆0 > ∆1, but now

λ∆0 − (2λ∆0 − 1)1/2 < λ∆1 < λ∆0, (3.6)

so that the characteristics have turning points in the contraction, although the
minimum value of ∆, ∆0 − ∆1, remains positive. The characteristics which lead to a
steady solution are those which have an asymptotic turning point at the throat of the
contraction so that,

12f0 = −(∆0 − ∆1)
2. (3.7)

Thus from (3.2), asymptotically, a steady hydraulically controlled solution will form
in the vicinity of the contraction of the form

6A = −∆+ sgn x(∆2 − (∆0 − ∆1)
2)1/2. (3.8)

In the hydraulic theory, this corresponds to a normal control as the solution is
controlled at the maximum constriction. Upstream of the contraction this is again
preceded by a rarefaction of amplitude A+, where A+ is the upstream limiting value of
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A in (3.8). Downstream a shock must form as the characteristics with turning points
in the contraction carrying the value A−, where A− is the downstream limiting value
of A in (3.8), will intersect with characteristics emanating from downstream carrying
the value Λ, and A− < Λ. This shock will have the asymptotic velocity

V = 3Λ+ 1
2
∆0 − 1

2
(∆2

0 − (∆0 − ∆1)
2)1/2. (3.9)

Of course, this shock can be resolved by dispersive effects to have the structure of an
undular bore. In the final regime, where

∆1 > ∆0, (3.10)

then at some point xc 6 0, ∆(xc) = 0. The characteristics which lead to a steady
solution now emanate from the base of the rarefaction where A = 0 and f0 = 0. Now,
the resulting steady solution is

6A =

{
0 if x > xc

−2∆ if x < xc.
(3.11)

This solution, where the control occurs away from the maximum topographic pertur-
bation, corresponds to a virtual control. Again, downstream of the contraction there
is a shock, which will have the asymptotic velocity 3Λ.

4. Rarefaction fronts (Λ < 0)
Consider solutions of the full system (2.25), (2.26) and (2.27) where again we

assume that 0 > 6Λ > −∆0. The hydraulic approximation, although it provides an
indication of the behaviour of trapped rarefactions, is obviously deficient in two ways.
First, it is only valid for long contractions. Secondly, it is invalid in the vicinity of
shocks where rapid changes in amplitude occur. To proceed further dispersion must
be reintroduced into the problem. This can be done by constructing an asymptotic
approximate solution, or by solving the problem numerically.

4.1. Asymptotic matched solutions

The hydraulic solution demonstrated that in the critical regime the asymptotic flow
will be steady in the vicinity of the contraction, upstream a rarefaction will propagate
away from the contraction and downstream a shock will propagate away from
the contraction. Following the solution technique of Smyth (1987) and Clarke &
Grimshaw (1994) an asymptotic solution can be constructed which puts detail on
these features of the hydraulic solution. In constructing this solution we are not
concerned with the transient interaction of the rarefaction with the contraction, rather
with the long-time solution that emerges. In the terminology of Clarke & Grimshaw
(1994) it would be expected that there is a strong and weak resonant regime.

In the strong resonant regime steady solutions of (2.25) having constant, unequal
limits as x→ ±∞, denoted as A± respectively, are sought. These solutions must satisfy

∆A+ 3A2 + Axx = ∆0A± + 3A2
±. (4.1)

In the limit |Λ|1/2xa � 1 the hydraulic approximation can again be used, and the
relevant solutions are (3.8) if ∆ > 0, and (3.11) if ∆ 6 0 somewhere in the contraction.
In the limit |Λ|1/2xa � 1 we can approximate θ, (2.27), with the Dirac delta function,
δ( · ), so that

∆ = ∆0 − ∆1Dδ(x), (4.2a)
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and

D = xa

∫ ∞
−∞
θ(x) dx. (4.2b)

A solution is sought of the form

A =

{
A+ if x > 0

A− + 2k2sech2k(x− x0) if x < 0,
(4.3)

and it can be shown that

16k3 − 31/2∆1D(∆0 − 4k2) = 0, (4.4a)

x0 =
1

2k
ln (2 + 31/2), (4.4b)

6A± = −∆0 ± 4k2. (4.4c)

The only branch of solutions for k of relevance for rarefactions is that upon which
k = 0 when ∆1D = 0. Therefore, for ∆1D > 0

0 6 4k2 < ∆0. (4.5)

For intermediate length contractions numerical solutions must be used to obtain A+

and A−. However, it is sufficient here to note that for both long and short contractions

−∆0 6 6A+ 6 0 and − 2∆0 6 6A− 6 −∆0. (4.6)

Upstream of the contraction A+ must be matched to A = 0, hence as A+ < 0 a
rarefaction will form with the approximate long-time solution

A =


A+ if x < (∆0 + 6A+)τ

(x− ∆0τ)/6τ if (∆0 + 6A+)τ < x < ∆0τ

0 if x > ∆0τ.

(4.7)

Obviously, when a virtual control occurs and A+ = 0 there is no upstream rarefaction.
Downstream of the contraction A− must be matched to the downstream level of the
shear front, Λ. In the hydraulic approximation, as Λ > A− a shock forms, which is
modelled as a modulated cnoidal wavetrain of the form (2.32). As shown by Smyth
(1987), the appropriate solution of the characteristic equations for the downstream
shock is

b = Λ+ µ

(
2− m− 2E

K

)
a = −µm
x

τ
= ∆0 + 6Λ+ 2µ

(
2− m+

2m(1− m)K

E − (1− m)K

)


for 0 6 m 6 1. (4.8)

As m → 1 the modulated wavetrain must match with the outer limit of the inner
solution, and so

µ = A− − Λ. (4.9)

The modulated wavetrain occupies the expansion fan

12(A− − Λ) 6
x

τ
− (∆0 + 6Λ) 6 2(A− − Λ), (4.10)
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consequently, if

∆0 + 6Λ+ 2(A− − Λ) > 0, (4.11)

the modulated wavetrain does not propagate away from the contraction and the
strong resonant solution no longer applies.

In the weak resonant regime a lee wavetrain forms downstream of the contraction,
which is matched to the downstream limit Λ by a modulated wavetrain. The lee wave
must satisfy

A = Λ+ µms(1− 2cn2κx), (4.12)

where κ2 = −µ and ms is the modulus of the lee wave. The amplitude will still be
steady in this region, hence (4.1) will apply, giving the two conditions

µ2m2
s = ∆0A+ + 3A2

+ − ∆0Λ− 3Λ2, (4.13a)

2µ(2− ms) = −(∆0 + 6Λ). (4.13b)

The second of these is equivalent to setting the cnoidal wavetrain velocity to zero in
(2.32) and (4.8). If A+ is known then µ and ms can be found. This is the case for long
contractions where the upstream solution must remain unchanged from (3.8) and
(3.11) as the flow is controlled in the contraction and any wave which can propagate
upstream will be transient and unsteady. Hence, dispersion can still be ignored in this
region. For short contractions this is not so, as through the jump conditions A+ is
dependent on the downstream solution. Here a solution is sought of the form

A =

{
A+ if x > 0
Λ+ µms(1− 2cn2κ(x− x0)) if x < 0,

(4.14)

where κ2 = −µ. Then from the continuity conditions across x = 0

A+ = Λ+ µms(1− 2cn2κx0), (4.15a)

(∆1DA+)2 = −16µ3m2
scn2κx0(1− cn2κx0)(1− ms + mscn2κx0). (4.15b)

These two conditions can then be used with (4.13) to obtain the steady solution in
the contraction. Immediately downstream the lee wave will have the solution (4.12),
and will occupy the expansion fan

∆0 + 6Λ+ 2µ

(
2− ms +

2ms(1− ms)Ks

Es − (1− ms)Ks

)
6
x

τ
6 0, (4.16)

where Es = E(ms) and Ks = K(ms). The modulated wavetrain again has the solution
(4.8), however, m is now in the range 0 6 m 6 ms, and the wavetrain occupies the
expansion fan

12µ 6
x

τ
− (∆0 + 6Λ) 6 2µ

(
2− ms +

2ms(1− ms)Ks

Es − (1− ms)Ks

)
. (4.17)

The limits for the resonant regimes for the cases of long and short contractions can
now be determined. For long contractions the limits of the strong and weak regimes
are respectively

S : λ∆1 > λ∆0 − (λ2∆2
0 − 4(λ∆0 − 1)2)1/2 and 1 6 λ∆0 6 2, (4.18a)
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W :


λ∆0 − (2λ∆0 − 1)1/2 6 λ∆1

6 λ∆0 − (λ2∆2
0 − 4(λ∆0 − 1)2)1/2 if 1 6 λ∆0 6 2

λ∆1 > λ∆0 − (2λ∆0 − 1)1/2 if λ∆0 > 2.

(4.18b)

For short contractions there is only a distinct strong resonant regime, given by

λ1/2D∆1 > 4

(
2

3

)1/2
(λ∆0 − 1)3/2

(2− λ∆0)
and 1 6 λ∆0 6 2. (4.19)

In the subcritical regime lee waves are generated for all values of ∆1D.
Assuming a smooth variation between the limits of long and short contractions

these results suggest that strong resonant behaviour, where a constant mean level
is generated downstream of the contraction, only occurs if the incident rarefaction
satisfies

−∆0 6 6Λ 6 − 1
2
∆0. (4.20)

4.2. Numerical solutions

To solve (2.25) numerically a simple adaption of the method of Fornberg & Whitham
(1978) is used, which uses Fourier transforms to evaluate the derivatives. However as
problems involving fronts have unequal limits as x → ±∞, which we denote here as
A± respectively, these cannot be used. This can be overcome by writing

A = A+ + 1
2
(A− − A+)(1− tanh x) + A′(x, t). (4.21)

The derivatives of the first term are evaluated analytically, whereas Fourier transforms
are used to evaluated the derivatives of the residue A′. Sponge layers are used at the
boundaries of the domain to avoid problems due to periodic boundary conditions.
Apart from this the method is essentially the same as that of Fornberg & Whitham
(1978).

Two examples of the numerical solutions are shown in figure 1, the first from the
strong resonant regime and the second from the weak resonant regime. Both clearly
display the features outlined in the asymptotic matched solutions of the previous
subsection. In figure 1(a) the strong resonant example is shown. The rarefaction
propagates towards the contraction, and the result of this interaction is that a steady
solution forms in the contraction, a rarefaction propagates upstream and a modulated
wavetrain propagates downstream. In figure 1(b) an example of the weak resonant
regime is shown. Now, a lee wave forms downstream of the contraction instead of
the modulated wavetrain.

5. Undular bores (Λ > 0)
Consider now solutions of (2.25), (2.26) and (2.27) for

4Λ > max (−∆0, 0). (5.1)

In this compressive case the hydraulic limit implies that a shock forms before the
front reaches the contraction, and so dispersion must then be included, with the
outcome being the formation of an undular bore. Consequently, to investigate the
interaction of undular bores with contractions, we shall resort to numerical solutions.

5.1. Long contractions

In the limit Λ1/2xa � 1 the boundaries of any regimes which occur will be a function
of λ∆0 and λ∆1. The classifications of numerical solutions on this basis are shown
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Figure 1. Numerical solutions of (2.25), (2.26) and (2.27) for rarefactions with Λ = −1/3, xa = 2
and ∆1 = 2. In (a) a strong resonant solution with ∆0 = 3 and in (b) a weak resonant solution
for ∆0 = 4. The approximate final limits of the upstream propagating rarefaction is shown in both
parts by vertical arrows. In this and subsequent figures the imposed flow is from right to left and
the contraction is centred at x = 0.

in figure 2. Three types of solutions occur, strong and weak resonant flows and
subcritical flows. The empirical limits of the strong and weak resonant regimes are
found to be

S : 4λ∆1 > 9(λ∆0 + 1)2 − 1 if λ∆0 > − 2
3
, (5.2a)

W :

{
4λ∆1 6 9(λ∆0 + 1)2− 1 if − 2

3
6 λ∆0 6

1
2

4λ∆1 6 9(λ∆0 + 1)2− 1, λ|∆0−∆1|> (2λ∆0− 1)1/2 if λ∆0 >
1
2
.

(5.2b)

First, a strong resonant regime occurs adjacent to the line 4Λ = −∆0. A typical
solution from this regime is shown in figure 3(a). Here the behaviour can be character-
ized as individual solitary waves of the undular bore interacting with the contraction,
rather than the undular bore as a whole. Initially the bulk of the expansion fan
propagates downstream, however the leading wave of the undular bore eventually
propagates toward the contraction. In the contraction the solitary wave is amplified,
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Figure 2. The classification of numerical solutions of (2.25), (2.26) and (2.27) for Λ > 0 and
Λ1/2xa � 1. Three distinct regimes are found, the strong resonant regime (S), the weak resonant
regime (W ) and the subcritical regime (B).

decays and eventually propagates upstream. As part of this interaction process a
small amplitude wave is sent downstream from the throat of the contraction, which
interacts with the bulk of the undular bore which remains downstream. Eventually a
second solitary wave can separate off from the undular bore and propagate upstream,
repeating the interaction process. Further numerical simulations suggest that this
process is repeated indefinitely, with the bulk of the undular bore being positioned
a finite distance downstream from the throat of the contraction and solitary waves
periodically separating off and propagating upstream through the contraction.

In the weak regime the solutions are characterized by a continuous interaction
of the undular bore with the contraction, an example of this being shown in figure
3(b). The limits of the expansion fan can be clearly seen to be propagating upstream
and downstream in this case. Waves with modulus greater than some value m0

can now propagate upstream through the contraction. In the contraction the waves
are amplified, decay and then propagate upstream. An unsteady interaction process
continues indefinitely in the contraction with waves of modulus m0 propagating
through the contraction and upstream.

In the final regime rapid interactions occur between the undular bore and the
contraction with the whole undular bore propagating upstream leaving a subcritical
solution of the form (3.5) in the vicinity of the contraction. An example of this is
shown in figure 3(c).

5.2. Short contractions

In the limit Λ1/2xa � 1 the regimes for the types of solutions should be functions
of λ∆0 and λ1/2D∆1. A classification of a range of numerical solutions based on
this scaling is shown in figure 4. Again, three distinct regimes occur, however the
behaviour differs from that for long contractions. Here the empirical limits of the
strong and unsteady weak resonant regimes are found to be

S : λ1/2D∆1 > 3λ∆0 + 2 if λ∆0 > − 2
3
, (5.3a)

Wu :

{
λ1/2D∆1 6 3λ∆0 + 2 if − 2

3
6 λ∆0 6 1

(1− (λ∆0)
−1)1/3(3λ∆0 + 2) 6 λ1/2D∆1 6 3λ∆0 + 2 if λ∆0 > 1.

(5.3b)
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Figure 3. Three solutions of (2.25), (2.26) and (2.27) for Λ = 1/3, xa = 5 and ∆1 = 2, corresponding
to a solution from each of the regimes in figure 2. (a) A strong resolution solution where ∆0 = −1;
(b) a weak resonant solution where ∆ = 0 and in (c) a subcritical solution where ∆0 = 2.

Again a strong resonant regime occurs adjacent to the line 4Λ = −∆0. An example
is shown in figure 5(a). In contrast to the regime for long contractions, here after the
interaction a quasi-steady shelf and a downstream propagating undular bore forms
downstream of the contraction. Solitary waves are formed on the downstream side
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Figure 4. The classification of numerical solutions of (2.25), (2.26) and (2.27) for Λ > 0 and
Λ1/2xa � 1. Three distinct regimes are found, the strong resonant regime (S), the unsteady weak
resonant regime (Wu) and the steady weak regime (Ws). This last regime represents the subcritical
solutions.

of the contraction and then propagate upstream. For each solitary wave a small-
amplitude solitary wave is also generated and propagates downstream on the shelf,
interacting with the downstream undular bore. The behaviour in this regime is similar
to the corresponding strong regime for rarefactions, except here the solution in the
vicinity of the contraction is always unsteady.

In contrast to rarefactions there are now two weak regimes, an unsteady and a
steady weak regime. In the unsteady weak regime the undular bore remains trapped
in the vicinity of the contraction, an example of which is shown in figure 5(b). The
characteristic features of the long-time solution are that a quasi-steady lee wavetrain
forms downstream of the contraction and large-amplitude solitary waves propagate
upstream from the contraction. As in the strong resonant regime these solitary waves
are formed immediately downstream of the contraction and then propagate upstream
through the contraction. This generation process creates small amplitude waves which
propagate downstream, interacting with the lee-waves. Thus in the vicinity of the
contraction solutions again remain unsteady for all time.

In the steady weak regime the features are similar except here the upstream
undular bore is able to propagate away from the contraction. An example is shown
in figure 5(c). In consequence immediately upstream of the contraction the amplitude
is constant. Immediately downstream a steady lee wavetrain forms. This regime is
effectively the subcritical regime for short contractions.

6. Conclusions
A model of the interaction of weakly nonlinear fronts in a stratified fluid with

contractions has been considered here in an attempt to understand the dynamics of
the establishment of virtual controls. It has been first argued that the appropriate
model equation for this process is a variable coefficient KdV equation, (2.25). Solutions
of this equation demonstrate that virtual controls will only occur for rarefactions
whose amplitudes, Λ, fall in the range (4.20), where ∆0 is the detuning parameter
of the unperturbed flow, and for which the conditions change from subcritical to
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Figure 5. Three solutions of (2.25), (2.26) and (2.27) for Λ = 1/3, xa = 1/2 and ∆1 = 2,
corresponding to a solution from each of the regimes in figure 4. (a) A strong resolution solution
where ∆0 = −1; (b) a unsteady weak resonant solution where ∆ = 0 and in (c) a subcritical or
steady weak solution where ∆0 = 3.
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Figure 6. The regimes obtained from the theoretical analysis of § 4 and the numerical solutions of
§ 5 for ∆0 positive with ∆0 used as the scaling parameter rather than Λ. In (a) the regimes for long
contractions and in (b) for short contractions. The notation for the regimes is identical to that used
in figures 2 and 4 respectively. Note that in (a) the strong resonant regime for positive Λ appears
outside of this figure. The locus of the linear solutions of (2.25) (Λ = 0) is shown on both figures
as a dotted line.

supercritical within the contraction. For rarefactions with amplitudes exceeding the
upper value of (4.20) a modified form of virtual control is possible for sufficiently long
contractions. This incorporates a steady lee wavetrain downstream of the contraction,
rather than a constant amplitude shelf as in classical hydraulic theory. These results
contrast with the weakly nonlinear limit of unsteady hydraulic theory which predicts
virtual controls can occur for rarefactions so long as the conditions change from
subcritical to supercritical within the contraction. For undular bores virtual controls
cannot occur. Instead, the interaction with contractions is a dynamic process which
never settles to a steady state. In the near-critical limit these interactions can take two
forms. In the first form part of the undular bore can propagate upstream through
the contraction; however, the trailing edge propagates downstream. In the second
form, the bulk of the undular bore is trapped downstream of the contraction and
periodically the leading wave of the undular bore separates off as a solitary wave and
interacts with the contraction.

The behaviour of rarefactions and undular bores has been explicitly considered
here, however, there is a third possibility, namely, linear fronts. This can occur in two
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circumstances, first the trivial case for which Λ ≡ 0. This case can be dismissed as an
exact solution of (2.25) is A ≡ 0. A more important case is that for which the nonlinear
coefficient r in (2.23) approaches zero. This occurs for example for a uniformly
stratified fluid or a pycnocline located at approximately the mid-depth of a channel.
In these circumstances it would be expected that an alternative equation to (2.25)
must be derived which balances the leading order dynamical effects of nonlinearity
and dispersion and the effect of the variable velocity. However, dispersion may be
sufficient to balance the amplification due to the contraction, and so, allow the system
to settle down to a steady state. This purely linear problem can be investigated by
uniting the results for rarefactions and undular bores, both of which must approach
the same limit as Λ → 0. The linear problem is only relevant for ∆0 positive, thus
instead of the choice (2.30) we can choose λ = ∆−1

0 . The various flow regimes can then
be replotted using this alternative scaling. In figure 6 this is shown for long and short
contractions. The linear solutions now occur on the lines Λ = 0 of these figures. The
solutions break down on this line as the boundary between the subcritical and weak
resonant regimes is approached. This must be the case as the weak resonant regime
requires the presence of nonlinear effects and so the linear solution becomes secular.
For a long contraction the linear solution breaks down exactly where expected when
∆1 = ∆0, i.e. when the conditions change from subcritical to supercritical somewhere
in the contraction. However, for a short contraction there is no boundary between the
subcritical and weak resonant regimes on the line Λ = 0, consequently the purely linear
solution always remains valid. Between these two limits there must be a critical value
of ∆1 for each value of xa at which the linear solution breaks down, and it is only as ∆1

approaches this critical value that an alternative equation to (2.25) must be derived.
The limits of the various near-critical regimes described here are given by (4.18),

(4.19), (5.2) and (5.3). However, these expressions are derived in terms of the rescaled
vKdV equation (2.25), and so here we reinterpret these results in terms of the original
variables. Thus, let ζ, z, x be the isopycnal displacement, the vertical and along-
channel coordinate all scaled by the undisturbed fluid depth h, and b the relative
width of the channel where bmax = 1 far upstream and downstream. Far downstream
assume that the incident shear front is ζ = ϕ(z), where ϕ is an eigenvector of (2.16)
with corresponding eigenvalue c. Then the effective amplitude of the shear front is

Λ =

3

∫ 1

0

ϕ3
z dz

2

∫ 1

0

ϕ2
z dz

, (6.1)

and so, is a rarefaction front for Λ < 0 and an undular bore for Λ > 0. The effect of
dispersion is characterized by the parameter µ, where

µ =

∫ 1

0

ϕ2 dz

2

∫ 1

0

ϕ2
z dz

. (6.2)

The Froude number is

F =

(
ū

c

)2

, (6.3)

where ū is the oncoming flow into the contraction. Then (4.18), (4.19), (5.2) and (5.3)



Weakly nonlinear internal wave fronts 343

4.0

3.5

3.0

2.5
0 0.2 0.4 0.6 0.8

z1

b
q2

Figure 7. A plot of contours of the Bernoulli function for a two-layer fluid, (6.5), for qr = 0.5. Two
hydraulically controlled contours are shown in bold. On the right the flow experiences a normal
control and on the left a virtual control.

now apply with

λ∆0 = |Λ|−1
(1− F1/2), (6.4a)

λ∆1 = |Λ|−1
(1− bmin), (6.4b)

λ1/2D∆1 = (µ|Λ|)−1/2

∫ ∞
−∞

(1− b) dx. (6.4c)

Next, let us consider the results presented here in relation to the two-layer hydraulics
of Armi (1986). For a two-layer flow define z1 and z2 to be respectively the thicknesses
of the upper and lower layers, such that z1 + z2 = 1. Let q1 and q2 be the mass flux in
each layer and qr = q1/q2. Then, rewriting equation (29) of Armi (1986), in the steady
hydraulic limit the interface must correspond to constant values of the Bernoulli
function

B = z2 +
q2

2(z2
1 − q2

r z
2
2)

2b2z2
1z

2
2

. (6.5)

For qr = 0.5, which corresponds to figure 3(b) of Armi (1986), selected contours of B
are shown in figure 7. Consider a flow which initially has z1 = 1/2, then the initial
velocity is vertically sheared, being twice as strong in the lower layer than in the upper
layer. In the near-critical limit there will be a resonant response of the interface and
its evolution will be governed by (2.13). Consequently only normal controls can occur
at the throat of the contraction, an example of a possible final state is shown in bold
in figure 7. The quadratic form of this curve reflects the fact that the amplitude of the
interface scales as O((1 − bmin)1/2). However, if z1 = 1/3 the initial flow through the
contraction is uniform. Then the near critical evolution of any waves will be governed
by (2.23). In this configuration a rarefaction raises the interface, while an undular
bore lowers the interface. If no fronts are generated then a valid solution is z1 ≡ 1/3.
Thus the interface achieves a steady state which is flat throughout the contraction,
and this steady state may possibly pass through virtual controls on the upstream and
downstream side of the throat of the contraction. If a rarefaction of sufficiently large
amplitude can propagate to the vicinity of the contraction then at the downstream
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virtual control it can become trapped and form a solution such as shown in bold.
For rarefactions which do not satisfy (4.18), steady lee-waves form downstream of the
contraction. If an undular bore propagates to within the vicinity of the contraction
then the present theory demonstrates that no steady hydraulic solution can form.

It is rather more problematic to compare the present theory with the hydraulic
studies of Wood (1968) and Armi & Williams (1993) of the withdrawal of a con-
tinuously stratified fluid from an infinite reservoir. Here, as any steady state can
only be set up by fronts propagating upstream from the withdrawal outlets to the
vicinity of the contraction, one must consider the ratio of the downstream width of
the channel to the minimum width of the channel. In general this ratio is order unity,
which creates two problems. First, a large number of modes then have zero velocity
on the downstream side of the throat of the contraction, thus one cannot separate
out a unique near-critical mode. Secondly, the response of any near-critical front to
the velocity changes in the contraction will be O(1 − bmin), and so, finite-amplitude
effects must be considered. The final difficulty, related to this, is that for both sets of
experiments the initial stratification is approximately linear, thus, in a theory such as
presented here one must consider finite-amplitude effects as was done by Grimshaw
& Yi (1991) for stratified flow over topography. This approach is currently under
investigation and will be presented elsewhere. However, some qualitative comparisons
can be made. The first point is that the initial flow throughout the domain must be
potential flow. Hence, in the vicinity of the contraction the flow can be assumed to be
uniform with height, and so, if the conditions at the throat of the contraction are such
that the first mode is near-critical then its evolution will be given by a generalization
of (2.23). The trapping and interaction of fronts within the contraction then can
create the strong shear and separation of isopycnals from the boundaries observed by
both Wood (1968) and Armi & Williams (1993). For the hydraulic solution of Wood
(1968) the isopycnals are deformed as the flow accelerates through an infinite number
of virtual controls on the upstream side of the contraction. Thus we would infer that
the first mode experiences a normal control of the type (3.8) at the throat of the
contraction. The upstream virtual controls are trivial controls where the amplitude
is zero as the higher mode fronts are not able to propagate past the throat of the
contraction. On the downstream side of the contraction conditions then must be su-
percritical with respect to the first mode, consequently they must also be supercritical
with respect to the higher modes. However, the change in the velocity and density
structure downstream of the throat of the contraction must cause an alteration to the
modal structure and long-wave speeds of the higher mode fronts in a similar manner
to that described by Clarke & Imberger (1995). Then due to the slowly varying
conditions in the contraction it would be expected that these modified fronts would
become trapped at virtual controls on the downstream side of the contraction. For
the experiments of Armi & Williams (1993) it is apparent that for a number of flows
(see their figures 7(a), 9, 15(a) and 17) the isopycnals are not deformed upstream of
the throat of the contraction. Thus we would infer that for these flows the first mode
front becomes trapped at some point downstream of the throat of the contraction
and experiences a virtual control of the type (3.11).

One special situation for which virtual controls have been postulated to occur,
but for which the theory presented here does not apply, is that of exchange flows.
Hydraulic theory for this problem for two-layer fluids has been considered by Wood
(1970), Armi & Farmer (1986) and Farmer & Armi (1986). These flows have a strong
shear and so would seem to contradict the proposition made in Clarke & Grimshaw
(1994) that in the weakly nonlinear limit sheared flows would not exhibit virtual
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controls. However, that proposition is based on the assumption that the near-critical
mode is a regular mode. For exchange flows it is clear that the fundamental near-
critical mode must be a singular mode with a nonlinear critical layer. Maslowe &
Redekopp (1980) and Grimshaw (1981) among others have shown that in the weakly
nonlinear, long-wave limit these waves also satisfy the KdV equation. Following
this approach it may be possible to derive an equivalent evolution equation to
(2.25) which is a model for the establishment of virtual controls in exchange flows.
However, as these flows are highly nonlinear it is questionable whether a weakly
nonlinear approach can be applied to this problem.

This work was supported by the Australian Research Council. Thanks are due
to Professor Jörg Imberger who supervised the initial stages of this research while
S. R. C. was at the Centre for Water Research, University of Western Australia.
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